题意简述
判定 n 个含 ? 字符的二进制串是否存在一种把 0/1 填入 ? 中的方案使得任意两个串不具有前缀关系。
(一个串最多一个 ?)Sol
二进制串 ,并且一个串最多一个 '?'
很容易想到用 2-sat 和 trie 树。 那么问题变为插入这些二进制串,在 ‘?’ 处选择向哪边插入 ,使得任意一个结束节点的祖先节点中不存在一个结束节点。 然后我们考虑构建 2-sat 模型,首先每一个串分配一个变量表示 '?' 选择了什么(没有?就随便强制选则某一个就行了) 当然之后我们一种思路是直接用这些变量来判定并解决问题 ,不过复杂度显然是 \(O(n^2)\) 的。考虑优化,因为是祖先中不能存在结束节点,我们给每一个 trie 树上的节点加一个变量表示除去自己外的祖先中是否存在结束节点,这个东西显然从上到下具有传递性,那么可以初步建图了。
然后看怎么体现一个串的 '?' 的决策情况。发现这个东西不是很好做,因为结束节点不会受到自己影响。那么我们直接新建一个变量好了,表示包含了当前位置的情况下祖先是否有结束节点。之后我们还需要解决一个问题,就是一些不同的串可能共用了结束位置,我们显然不能够让他们共用一个变量,因为他们之间也是互相影响的,并且他们还来自不同的 '?' ,不能共用。
发现这个东西可以直接和上面的情况合并到一个变量上,因为本来我们插入完之后就要新建一个点,那么正好一起用,也不影响答案,把该连的边连上就行了。code:
#includeusing namespace std;template inline void init(T&x){ x=0;char ch=getchar();bool t=0; for(;ch>'9'||ch<'0';ch=getchar()) if(ch=='-') t=1; for(;ch>='0'&&ch<='9';ch=getchar()) x=(x<<1)+(x<<3)+(ch-48); if(t) x=-x;return;}#define TR(a) ((a)<<1|1)#define FA(a) ((a)<<1)const int N=5e5+10;const int MAXN=3e6+10;int son[MAXN][2];char S[N];char *s[N];int len[N],id[N];int n,cnt=0;inline bool cmp(int i,int j){return len[i] len[t]) {add(TR(t),FA(t));Insert(s[t],len[t],FA(t));} } for(int i=0;i<=cnt;++i) if(!dfn[i]) tarjan(i); puts("YES"); return 0;}